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Abstract: This study looks for evidence of a correlation between long-term changes in the lunar tidal forces and the inter-

annual to decadal variability of the peak latitude anomaly of the summer (DJF) subtropical high pressure ridge over 

Eastern Australia (LSA) between 1860 and 2010. A simple "resonance" model is proposed that assumes that if lunar tides 

play a role in influencing LSA, it is most likely one where the tidal forces act in "resonance" with the changes caused by 

the far more dominant solar-driven seasonal cycles. With this type of model, it is not so much in what years do the lunar 

tides reach their maximum strength, but whether or not there are peaks in the strength of the lunar tides that re-occur at the 

same time within the annual seasonal cycle. The “resonance” model predicts that if the seasonal peak lunar tides have a 

measurable effect upon LSA then there should be significant oscillatory signals in LSA that vary in-phase with the 9.31 year 

draconic spring tides, the 8.85 year perigean spring tides, and the 3.80 year peak spring tides. This study identifies 

significant peaks in the spectrum of LSA at 9.4 (+0.4/ 0.3) and 3.78 (± 0.06) tropical years. In addition, it shows that the 

9.4 year signal is in-phase with the draconic spring tidal cycle, while the phase of the 3.8 year signal is retarded by one 

year compared to the 3.8 year peak spring tidal cycle. Thus, this paper supports the conclusion that long-term changes in 

the lunar tides, in combination with the more dominant solar-driven seasonal cycles, play an important role in determining 

the observed inter-annual to decadal variations of LSA. 
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1. INTRODUCTION 

 According to current tidal theories (Chapman and 
Lindzen [1]; Lindzen [2]), atmospheric tides are excited 
primarily by the Sun’s heating of the atmosphere, whereas 
ocean tides are excited primarily by the Moon’s gravitational 
tidal pull. This means that short-term atmospheric tides are 
detected as regular but small oscillations in surface pressure 
with periods of 12 hours (S2) and 24 hours (S1) that are 
related to the solar day. In contrast, ocean tides are primarily 
detected as oscillations in sea-surface height with semi-
diurnal (M2 = 12.42 hours) and diurnal (M1 = 24.85 hours) 
periods that are related to the longer lunar day (i.e. the time 
between successive lunar transits). Hence, it is generally 
believed that any atmospheric tides that are induced by lunar 
tidal forces are far too small to have any noticeable effect 
upon atmospheric circulation in the Earth’s lower 
atmosphere, leaving solar radiation as the dominant external 
forcing factor. 

 However, Li [3], Li and Zong [4] and Li et al. [5] have 
shown that, contrary to currently accepted tidal theories, 
cyclical changes in lunar tidal forcing produce 27.3 day and 
13.6 day periodic atmospheric tides. They detect these 
atmospheric tides in the tropical troposphere at heights above 
the 700 hPa isobaric surface (~ 3000m). Furthermore, Li et 
al. [5] claim that the changes in lunar tidal forcing that are  
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responsible for the lunar-driven atmospheric tides, are the 
same as those that are collectively responsible for the 
periodic changes in the Earth’s length-of-day (LOD), on 
fortnightly to seasonal timescales. 

 Periodic variations in the LOD caused by tidal 
deformation of the polar moment of inertia (Defraigne and 
Smits [6]; Yoder et al. [7]) reveal that, on fortnightly to 
seasonal timescales, there are five significant periodic 
variations in the LOD that are caused by the lunar tides. 
These tidal variations have periods at 13.63 days (Mf’), 
13.66 days (Mf), 14.77 days (Msf), 27.56 days (Mm), and 
182.62 days (Ssa) (Varga et al. [8]). 

 Thus, if you accept the claim of Li et al. [5] that their 
atmospheric tides exhibit the same periodicities as those 
found in the Earth’s LOD, it opens up the possibility that 
these short-term variations in the LOD could be used to 
determine the periods for tidally-induced long-term 
variations in Earth’s atmospheric pressure distribution. 

 The simplest way to determine the possible periods for 
atmospheric tides on inter-annual to decadal time scales (i.e. 
from 2 to 20 years) is to list the beat frequencies of the 
tidally-induced fortnightly and monthly variations in the 
LOD. There are three possible beat frequencies that lie 
between 2 and 20 years. These are: 

 3.00/6.00 years: The 6.0 year period corresponds to the 
time required for the perigee of the lunar orbit to realign with 
the same node of the lunar orbit. Of course, this means that 
the fundamental repetition period is actually 3.00 years since 
the lunar orbit has two distinct nodes. 
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 8.85 years: This period corresponds to the time required 
for the line-of-apses of the lunar orbit to precess once around 
the Earth with respect to the stars. 

 9.30/18.6 years: The 18.6 year period corresponds to the 
time required for the line-of-nodes of the lunar orbit to 
precess once around the Earth with respect to the stars. 
Again, this implies a fundamental repetition period of 9.30 

years because of the lunar orbit’s two nodes. 

 The problem with this simple analysis is that it does not 
take into account the different ways in which the lunar tides 
can interact with the Earth’s climate system. The first aim of 
this work is to determine which of these tidal periods are 
most likely to be observed for the long-term atmospheric 
tides, given some simple constraints upon the way in which 
the lunar tides interact with the Earth’s climate system. The 
second aim is to extend the pioneering work of Li et al. [5] 
by looking for evidence of atmospheric tides on inter-annual 
to decadal timescales. In particular, the paper will investigate 
if there is any link between the variations in the strength of 
the lunar tides and the atmospheric pressure variations over 
Eastern Australia. 

 The methodology used in this study is described in 
section 2. The first part of section 2 outlines the properties of 
the lunar tides that determine the periods of long-term 
atmospheric tides. The second part of section 2 presents the 
main data set used in this study. This data set consists of a 
time series of the summer (DJF) anomaly of the peak latitude 
of the sub-tropical high pressure ridge over Eastern Australia 
(LSA), for each year from 1860 to 2010. The third part of 
section 2 describes the different methods of spectral analysis 
that are used to identify oscillatory signals in the spectrum of 
the data set. 

 The main results of this investigation, along with the 
results of the spectral analysis of the principle data set, are 
presented in section 3. Finally, the conclusions are outlined 
in section 4. 

 In conclusion, it is important to note that many of the 
time intervals and orbital periods that are quoted in this 
paper are means or averages. The fact that they are averages 
allows us to quote them to the level of precision stated. 
However, in many cases there can be significant variation of 
these time intervals and orbital periods about the quoted 
value of the mean. Hence, the average values only become 
meaningful if we are considering time intervals that are long 
compared to the orbital period of the Moon. 

2. METHODOLOGY 

2.1. The Potential Periods for Long-Term Atmospheric 

Tides 

 There are two methods that can be used to work out the 
possible periods for long-term atmospheric tides. The first 
method assumes that lunar-tidal forces act independently of 
the other forcing factors that produce significant long-term 
variations in atmospheric pressure (e.g. seasonal variations 
in solar heating). Under this assumption, you would expect 
to see long-term periodicities in the pressure records that 
would match periodicities of the most extreme peak lunar 
tides. The second method investigates what happens when 
this assumption breaks down. 

 The most significant large-scale systematic variations of 
the atmospheric surface pressure, on an inter-annual to 
decadal time scale, are those caused by the seasons. These 
variations are predominantly driven by changes in the level 
of solar insolation with latitude that are produced by the 
effects of the Earth's obliquity and its annual motion around 
the Sun. This raises the possibility that the lunar tides could 
act in "resonance" with (i.e. subordinate to) the atmospheric 
pressure changes caused by the far more dominant solar-
driven seasonal cycles. With this type of simple “resonance” 
model, it is not so much in what years do the lunar tides 
reach their maximum strength, but whether or not there are 
peaks in the strength of the lunar tides that re-occur at the 
same time within the annual seasonal cycle. 

 Hence, a strong peak in the lunar tidal forces that slowly 
drifts through the seasons, with each advancing year, may 
not be as effective at influencing the atmospheric pressure 
distribution, as a weaker tidal peak that appears at precisely 
the same time during the seasonal (tropical) year (hereafter 
referred to as the seasonal peak tides). 

2.1.1. The Most Extreme Peak Lunar Tides 

 Keeling and Whorf [9] has shown that the most extreme 
peak lunar tides occur whenever the Sun and Moon are in 
direct mutual alignment. This occurs at syzygy (i.e. either 
Full or New Moon), when there is either a lunar or solar 
eclipse, the Moon is at perigee, and the Earth is at perihelion. 
According to these authors, the dominant periodicities for 
exceptional peak tides should matched the shortest period 
over which there is a re-occurrence of syzygy, an eclipse, 
perigee and perihelion. This repetition period is the 18.03 
tropical year Saros cycle and its immediate sub-multiples 
(i.e. 3.01, 6.01, and 9.02 tropical years). Column one of 
Table 1 summarizes the periodicities expected for the most 
extreme peak lunar tides. 

2.1.2. The Seasonal Peak Tides 

 There are four factors which can affect the strength of 
seasonal peak tides. The first is the proximity of the 
Earth/Moon system to the Sun. The second is the relative 
position of the Moon with respect to the Sun. The third is the 
proximity of a New/Full Moon to one of the nodes of the 
lunar orbit. Finally, the fourth is the proximity of a New/Full 
Moon to the perigee of the lunar orbit. 

2.1.2.1. The Proximity of the Earth/Moon System to the Sun 

 Due to the elliptical nature (e = 0.0167) of the Earth's 
orbit, the distance of the Earth/Moon system from the Sun 
varies between an aphelion of 152.1 million km around July 
04

th
 to a perihelion of 147.1 million km on January 3

rd
 

(Standish and Williams [10]). This means that the strength of 
lunar tidal forces near January 03

rd
 are noticeably enhanced 

compared to those that are near July 04
th

. Hence, the effects 
of any long-term seasonal peak tides upon atmospheric 
pressure will be naturally enhanced if these peak tides are 
aligned with the date of perihelion. 

2.1.2.2. The Relative Position of the Moon with Respect to 
the Sun 

 Higher than normal spring tides occur once every semi-
synodic month (Msf), whenever the Sun, Earth and Moon 
are co-aligned at either New or Full Moon. It turns out that 
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12.5 synodic months are 3.890171 days longer than one 
tropical year (N.B. from this point forward, the word “year” 
will mean one tropical or seasonal year = 365.2421897 days 
(J2000) (McCarthy and Seidelmann [11], unless indicated). 
Hence, if a spring tide occurs on a given day of the year, 
3.796 tropical years will pass before another spring tide 
occurs on the same day of the year. This occurs because: 

(0.5 synodic months)/(12.5 synodic months - tropical year) = 
(14.7652944 days/3.890171 days) = 3.796 years. 

 In addition, it can be shown that multiples of half of the 
lunar synodic cycle (Msf) are almost exactly equal to whole 
multiples of a year, for 4.0 years, 4.0 + 4.0 = 8.0 years, 4.0 + 
4.0 + 3.0 = 11.0 years, 4.0 + 4.0 + 3.0 + 4.0 = 15.0 years, and 
4.0 + 4.0 + 3.0 + 4.0 + 4.0 = 19.0 years. 

 Hence, spring tides that occur on roughly the same day of 
the year follow a 4:4:3:4:4 year spacing pattern (with an 
average spacing of (4 + 4 + 3 + 4 + 4)/5 = 3.8 years), with 
the pattern repeating itself after a period of almost exactly 19 
years. The 19.0 year period is known as the Metonic cycle. 
This cycle results from the fact that 235 Synodic months = 
6939.688381 days = 19.000238 Tropical years. 

 Finally, the variation in strength of the seasonal peak 
spring tides from year to year is best measured by the 
number of days that the New/Full Moon is from the date of 
Perihelion (i.e. January 03

rd
). 

2.1.2.3. The Proximity of the New/Full Moon to One of the 
Nodes of the Lunar Orbit 

 The Moon moves around the Earth in an elliptical orbit 
that is inclined to the plane of the ecliptic by ~ 5.1

O 
(Allen 

and Cox [12]). This means that the Moon crosses the ecliptic 
at two points known as the nodes of the lunar orbit. Hence, 
stronger than normal spring tides (known as draconic spring 
tides) occur whenever a New/Full Moon takes place near one 
of the nodes of the lunar orbit. 

 The Moon moves from one node back to the same node 
once every 29.212221 days (J2000) (Chapront-Touzé and 
Chapront, [13]). This period of time is called the Draconic or 
Nodal lunar month. It turns out that 13.5 draconic months are 
2.122791 days longer than one year (Chapront-Touzé and 
Chapront [13]). Hence, if a lunar node aligns with the Sun on 
a given day of the year, 6.410 years will pass before another 
lunar node aligns with the Sun on roughly the same day of 
the year. This occurs because: 

(0.5 draconic months)/(13.5 draconic months – tropical year) 
= (13.606110 days/2.122791 days) = 6.410 years. 

 Unfortunately, when a lunar node realigns with the Sun 
on roughly the same day of the year, the Moon is no longer 
at the same lunar phase. In order to have a lunar node realign 
with the Sun on the same day of the year, and for the Moon 
to return to the same phase (e.g. New/Full Moon) as well, it 
would take a period of time set by the beat period between 
3.796 and 6.410 years i.e. 9.308 years. This means that if a 
New Moon takes place when one of the lunar nodes points at 
the Sun, 9.31 years later, a Full Moon will occur when a 
lunar node points at the Sun. Thus, the spacing between 
draconic spring tides is 9.31 years, a period equal to half of 
the 18.61336 year draconic lunar cycle (= 9.307 years). 

 Technically speaking, draconic spring tides do not fall 
exactly on the same day of the annual seasonal cycle. 
However, they do take place within +5/-4 days either side of 
a given date (with an average absolute difference of only ~ 
2.6 days), so they can be considered to be quasi-peak 
seasonal tides that take place on roughly the same day of the 
year, once every 9 or 10 years. 

 Finally, the variation in strength of draconic seasonal 
peak tides from year to year is best measured by the angle (in 
degrees) between the lunar line-of-nodes and the Earth Sun 
axis, at the time of perihelion. 

2.1.2.4. The Proximity of the New/Full Moon to the Perigee 
of the Lunar Orbit 

 The distance of the Moon from the Earth varies from a 
minimum (perigee) of 356,500 km to a maximum (apogee) 
of 406,700 km (Meeus [14]). Hence, stronger than normal 
spring tides occur whenever a New/Full Moon take places at 
the point of closest perigee in the lunar orbit. 

 The Moon moves from one perigee to the next in 
27.554551 days (J2000) (Chapront-Touzé and Chapront 
[13]), a period of time known as one anomalistic month. It 
turns out that 13.5 anomalistic months are 6.7442337 days 
longer than one tropical year. Hence, if a lunar perigee aligns 
with the Sun on a given day of the year, 2.043 years will 
pass before lunar apogee aligns with the Sun on the same 
day of the year. This occurs because: 

(0.5 anomalistic months)/(13.5 anomalistic months – tropical 
year) = (13.777275 days/6.7442337 days) = 2.043 years. 

 Unfortunately, when a lunar apogee realigns with the Sun 
on the same day of the year, the Moon is no longer at the 
same lunar phase. In order to have lunar apogee realign with 
the Sun on the same day of the year, and for the Moon to 
return to the same phase as well (so that the opposite lunar 
phase occurs at lunar perigee), it would take a period set by 
the beat period between 3.796 and 2.043 years = 4.424 years. 
This period of time is one half of the 8.8506 year lunar apse 
cycle (= 4.425 tropical years). 

 These enhanced spring tides qualify as quasi-seasonal 
peak tides for the simple reason that they re-occur on 
roughly the same day of the year once every 4 or 5 years, in 
a sequence that repeats itself every 31 years e.g. (5 + 5 + 4 + 
4 + 5 + 4 + 4)/7 = 4.429 years. The reason for the 31.00686 
year repetition period is the fact that 383.5 synodic lunar 
months = 11324.980825 days is almost exactly equal to 
411.0 anomalistic lunar months = 11324.92000 days. The 
difference between these two cycles is very small, 
amounting to only 1.46 hours over the 31 years. There is also 
another near coincidence in that 27.5 anomalistic lunar years 
= 11324.071832 days, ensuring that if a New Moon occurs at 
closest perigee, 31 Tropical years later, at almost exactly the 
same time of the year, a Full Moon will occur at closest 
perigee. 

 It is important to remember, however, that the enhanced 
spring tides that take place when a New Moon is at closest 
perigee (also known as perigean spring tides (Woods [15]) 
produce significantly stronger tides, than the enhanced 
spring tides that take place when Full Moon is a closest 
perigee. This means that the peak seasonal tidal cycle for 
perigean spring tides should have a period of 8.85 years, 
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rather than 4.43 years. Column two of Table 1 summarizes 
the periodicities that are expected to be produced by the 
different types of seasonal peak tides. 

 Finally, the variation in strength of perigean spring tides 
from year to year is best measured by the angle (in degrees) 
between the lunar line-of-apse and the Earth-Sun axis, at the 
time of perihelion. 

Table 1. The Predicted Periods for Tidally-Induced 

Atmospheric Tides on Inter-Annual to Decadal Time 

Scales 

 

The Periods for Extreme  

Peak Tides (Years) 

The Periods for Peak  

Seasonal Tides (Years) 

3.01 3.80 

6.01 8.85 

9.02 9.31 

18.03 18.61 

 

2.2. Data 

 There are three reasons why the peak latitude of the Sub-
Tropical (High Pressure) Ridge over Eastern Australia (STR) 
is well suited for investigating the potential influence of 
lunar tidal forces upon the atmosphere. 

 Firstly, the surface atmospheric pressure records are 
continuously available from 1850 to 2010. This means that 
the record length is long enough to permit a viable search for 
a tidal signal that extends over the inter-annual to decadal 
time scales that are normally associated with long-term lunar 
tidal variations. 

 Secondly, the STR provides us with a single parameter 
that describes the broad changes in atmospheric pressure 
over a relatively large geographic region. This allows us to 
search for the large scale spatial changes in atmospheric 
pressure that are likely to be associated with the effects of 
variations in the long-term lunar tidal forces. 

 Finally, the STR has very important climate implications 
for Eastern Australia. Pittock [16] has shown that the inter-
annual variability of the latitude of the surface subtropical 
high pressure maximum over Eastern Australia is major 
mechanism influencing inter-annual rainfall variability. It 
has also been shown to be connected to the inter-annular 
variability of the annual mean maximum temperatures 
(Coughlan [17]), zonal westerly winds (Thresher [18]), 
meridional wind and mean air temperature, and ozone 
(Pittock [19]). 

 The UK Met Office Hadley-Centre (UKMO) has 
published a data set called hadSLP2r.asc (Adam and Ansell 
[20]; www.hadobs.org [21]) that contains the mean monthly 
sea-level pressure (MSLP), averaged over 5 x 5 degree 
latitude-longitude bins, between the years (January) 1850 to 
(June) 2010. The hadSLP2r data has been used to create a 
meridional profile of the MSLP, for each of the summer 
months (i.e. December, January and February) for the years 
1852 to 2010 (hereafter referred to as the UKMO data set). 
This has been done by taking a latitudinal average of three 5 
x 5 degree bins centered at 140E, 145E, and 150E, for each 5 

degree step in latitude between 0 and 65 degrees south. N.B. 
the profile data points have not been weighted to correct for 
the difference in area between 5 x 5 degree bins with 
changing latitude. 

 Fig. (1) shows a meridional profile of the MSLP for 
February 1984. This profile is a typical example of the 
meridional profiles found in the UKMO data set. In this 
profile, we can see a zone of low pressure produced by the 
Summer Monsoonal Trough centred near 10

O
 S, a ridge of 

high pressure produced by the STR near 40
O
 S, and a second 

zone of low pressure south of 60
O
 that is associated with the 

Sub-Polar Trough. 

 Cubic spline functions (DADisp - DSP Development 
Corporation, [22]) have been fitted to all of the monthly 
meridional profiles in the UKMO data set. These cubic 
spline fits have then been used to locate the monthly peak 
latitude of the STR (hereafter referred to as L) through a 
process of interpolation. 

 The process of interpolation has been carried out using 
cubic spline curves to obtain (interpolated) MSLP 
measurements, spaced in steps of  a degree, between each 
of the observed values of MSLP. These measurements are 
used to locate the maximum (interpolated) MSLP of the 
meridional profile, and then a ruler, along with eye-
estimations of the fitted curves, are used to determine L, to 
the nearest 0.1 degree. 

 In addition, Bezier functions (Microsoft Excel software 
package - Microsoft Office 2007 [23]) have been fitted to all 
of the monthly meridional profiles to obtain values of L 
through a process of interpolation. However, in this case, 
only a ruler and eye-estimations of the fitted Bezier curves 
have been used to determine L, to the nearest 0.1 degree. 

 The use of two distinctly different methods of 
interpolation on the same set of data allows us to estimate 
the error associated with the interpolation process. The error 
in L due to the process of interpolation is equivalent to the 
sample mean of the absolute difference between 
corresponding measurements that are derived from the two 
methods of interpolation. A comparison of the two data sets 
shows that the error for each measurement of L due to 
process of interpolation is approximately 0.17 degrees. 
Hence, if we adopt a value of 0.1 deg for the instrumental 
error, each measurement of L should have an overall error 
( L) ~ 0.3 degrees. 

 Monthly anomalies for L were obtained using a mean 
monthly value of L for the base period 1961 1990 (William 
and Stone [24]). William and Stone [24] point out that it is 
important to investigate the monthly anomaly of L on a 
seasonally-averaged, rather than annually-averaged basis. 
Following their advice, we have taken the latitude anomalies 
for December, January and February for each year and 
averaged them together to give a mean summer value for the 
anomaly of L (hereafter referred to as LSA) for all of the 
years from 1851 to 2010. LSA is defined so that a positive 
value means that the STR is north of the mean latitude for 
that summer season 

 Fig. (2) shows LSA for the years from 1851 to 2010. The 
first feature to note about the data plotted in this figure is that 
the bulk of the (LSA) values lie between ±1.0 degree (the 
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standard deviation of the full data set is 0.93 degrees) with a 
very stable long term mean close to + 0.28 degrees (N.B. the 
mean of the data set plotted in Fig. (2) has been set to zero 
by subtracting 0.28 degrees from all of the values of LSA). 
The one noticeable exception to this long-term pattern is an 
abrupt upturn in the (LSA) data prior to 1856. The first five 
years of the data set (i.e. 1851 to 1855) has a mean that 
differs from the plotted long-term mean of zero by + 1.65 

degrees. The magnitude of this step-like deviation is almost 
three times the measurement error for (LSA) (i.e. 0.6 degrees) 
and almost two times the data's standard deviation of 0.88 
degrees, between 1860 and 2010. This raises the possibility 
that there may be a systematic error in the first five years 
worth of hadSLP2r MSLP measurements. 

 Given that there is some uncertainty as to whether this 
abrupt deviation in the first five years of the data is a genuine 

 

Fig. (1). A profile of the mean sea level pressure versus latitude for February 1984. 

 

Fig. (2). The anomaly of the peak latitude of the Summer Sub Tropical High Pressure Ridge over Eastern Australia (LSA) for the years from 

1851 to 2010. 
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trend, as opposed to a flaw in the original MSLP 
measurements, all (LSA) values prior to 1860 will be left out 
of the final data set. This has been done in order to err on the 
side of caution. 

2.3. Methods 

2.3.1. Least Squares Spectral Analysis – LSSA 

 The Lomb-Scargle periodogram is a least squares 
spectral analysis technique that is a very powerful method 
for finding and testing the significance of weak periodic 
signals ([Lomb [25]; Scargle [26], [27]). It is specifically 
designed to work with unevenly spaced data but there is no 
reason why it cannot be used with data that is evenly spaced. 
The Lomb-Scargle periodogram can test if peaks in the 
spectrum of LSA are significant compared to a red-noise 
background, formed by a first order auto regressive (AR1) 
process (Schulz and Mudelsee [28]). Another additional 
advantage of the Lomb-Scargle periodogram is that it can be 
used to test whether or not the use of an AR1 red-noise 
model is consistent with the LSA spectrum. 

 A program called Redfit 3.8e (Windows XP version 
(Schulz and Mudelsee [28]) is used to generate a Lomb-
Scargle periodogram of the LSA data set, and then the 
resulting periodogram is displayed in order to determine if 
there are any narrow-band spectral features that are 
significant. 

2.3.2. Singular Spectrum Analysis – SSA 

 Singular spectrum analysis (SSA) can be used to 
distinguish the contributions of oscillatory parts of a time 
series LSA from the parts that are associated with the long-
term trends and noise. Additionally, this technique can be 
used to determine the times period(s) over which a particular 
oscillatory signal is most prominent. 

 The results obtained from the SSA method depend upon 
the lag window length (LW) that is chosen to deconstruct the 
time series. The larger the value of LW, the better the SSA 
technique is at distinguishing between different spectral 
features that are embedded in the time series. However, it is 
important that the value of LW not exceed half the total 
number of data points in the time series data. These 
guidelines, along with a process of trial and error, were used 
to determine a value of LW that was sufficiently large 
enough to distinguish the main periodic signals from the 
long term trends and background noise of the spectrum 
(Caterpillar v1.0 1997 [29]). 

 Finally, the Caterpillarv1.0 program was used to 
reconstruct the oscillatory parts of the LSA time series that 
are associated with the significant features found in the 
spectrum of LSA. 

2.3.3. Cross  Correlation Analysis – CCA 

 In order to be able to claim a link between an oscillatory 
peak in the spectrum of LSA and one of the seasonal peak 
tides, it is necessary to show that both the period and phase 
of the oscillatory peak matches that expected for one of the 
seasonal peak tides. 

 A function called XCORR in a program called DADiSP 
[22] is used to cross-correlate LSA with two parameters that 
give a direct measure of the strength of the seasonal peak 

tides. The resulting corelograms are displayed in order to 
determine the phase-shift between oscillatory signals in the 
spectrum of LSA and their respective oscillatory signals in the 
seasonal peak tides. 

3. RESULTS 

3.1. Least Squares Spectral Analysis 

 A program called Redfit 3.8e (Schulz and Mudelsee [28]) 
was used to generate a Lomb-Scargle periodogram of the LSA 
data set. The parameters used in the configuration file 
needed to run Redfit were set to values that maximize the 
spectral resolution of the periodogram (N.B. for a detailed 
description of the parameters used with Redfit see Schulz 
and Mudelsee [28]). 

 The resulting spectrum is displayed in Fig. (3). The 
output of Redfit program indicates that the noise in the 
periodogram is consistent with an AR1 (red-noise) process. 
The solid continuous dark line running across the top of the 
spectrum in Fig. (3) is the critical false alarm level (CFAL) 
(Thomas [30]). Any periodic signals that have peak 
amplitudes exceeding this threshold level are believed to be 
inconsistent with an AR1 origin and so are considered 
significant. Hence, the only significant peaks in the spectrum 
in Fig. (3) are those at 9.4 (+0.4/ 0.3) and 3.78 (± 0.06) 
(N.B. the errors of the periods given are set at ± half of the 
6dB bandwidth). The 9.4 year peak is consistent with the 
period of the 9.3 year draconic spring tidal cycle and the 3.8 
year peak with the 3.8 year period of the spring tidal cycle. 

3.2. Singular Spectrum Analysis 

 The Caterpillar v1.0 program was used to deconstruct the 
LSA time series into its principle components using a window 
length value (LW) of 45 (years). This value was chosen as it did 
not exceed half the total number of data points in the LSA time 
series, and it was sufficiently large enough to distinguish the 
main periodic signals from the long term trends and 
background noise of the spectrum (Caterpillar v1.0 1997 [27]). 

 Fig. (4a) shows the time series that is reconstructed using 
the first two principal components (PC) of the SSA. Fig.  
(4b) shows the time series that is reconstructed from PC5 
and 6. PC1 and 2 are associated with 9.3 year spectral 
feature, PC5 and 6 with the 3.8 year feature, and PC3 and 4 
with the 2.6 year feature. Additionally, Fig. (4a, b) indicate 
that the two dominant spectral features account for ~ 29 % of 
the total spectral power in the reconstructed time series. 

 These two figures give us the times period(s) over which the 
9.3 year and 3.8 year oscillatory signals are most prominent. 
Fig. (4a) shows that the 9.3 year spectral feature is significant 
throughout the whole period between 1860 and 2010, although 
it is considerably enhanced between 1910 and 1970, while Fig. 
(4b) indicates that the 3.8 year feature is enhanced around the 
1930's and from about 1985 until 2010. 

3.3. Cross – Correlation 

 Fig. (5) shows the summer latitude anomaly of the peak of 
the STR (LSA in degrees), plotted against the angle between the 
Earth-Sun axis and the line-of-nodes of the Lunar orbit at 
perihelion ( , also measured in degrees). The angle  has been 
used to group the individual data points into bins from 0
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 The vertical error bars shown on each data point in Fig. 

(5) represent the 95 % confidence limits derived from the 

standard error on the mean for each bin (i.e. ± 1.96  / N , 

where  is equal to the standard deviation for the N data 

points within each bin). A clear trend is evident between the 

two variables plotted in Fig. (5), with LSA moving away from 

the Equator as  decreases. 

 The mean data point for each of the bins in Fig. (5), have 
been used to determine a line-of-best-fit. This fit has then 
been used to scale  (  = 0.013   0.347 where R

2
 = 0.92) 

so that 's mean and variance are comparable to that of the 

 

Fig. (3). A Lomb-Scargle periodogram of the LSA data set. The spectral amplitude is scaled such that the area under the spectrum is an 

estimator for the data variance. 

 

Fig. (4a). The reconstructed time series that uses the first two principal components (PC) of the SSA of the LSA time series. PC1 and 2 are 

associated with the 9.3 year spectral feature in the periodogram of LSA. 
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LSA time series. It is important to note that the time series for 
 has been calculated using the observed values of  for each 

year. 

 In order to establish a strong link between the 9.3 year 
spectral feature and the period of the draconic seasonal peak 

tides, we need to cross correlate the LSA time series with  
and show that the 9.3 year spectral signal is in phase with the 
draconic seasonal peak tidal cycle. 

 Fig. (6) shows a plot of the normalized cross-correlation 
function for LSA and , where both time series have been 

 

Fig. (4b). The reconstructed time series that uses the 5
th

 and 6
th

 principal components (PC) of the SSA of the LSA time series. PC5 and 6 are 

associated with the 3.8 year spectral feature in the periodogram of LSA. 

 

Fig. (5). The summer latitude anomaly of the peak of the STR (LSA in degrees), plotted against the angle between the Earth Sun axis and the 

line-of-nodes of the Lunar orbit at perihelion ( , also measured in degrees). The angle  has been used to group the individual data points into 

bins from 0
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shifted to a zero mean (N.B. a cross correlation between LSA 
and  would produce the same result as the current 
cross correlation, since the linear scaling of  has no effect 
upon the phase shift). 

 Horizontal dotted lines are superimposed on Fig. (6) to 

indicate the 95 % confidence levels (i.e. ± 1.96/ N  where 

N is the number of data points) for the cross correlation 

coefficient that rules out the null hypothesis that at least one 

of the times series is white noise. The resultant plot indicates 

that the cross correlation coefficient for LSA and  is 

significant, and that the observed 9.3 year periodic signal in 

the LSA time series is in-phase with the 9.3 year period of the 

draconic seasonal peak tidal cycle (as measured by ). 

 Fig. (7) shows LSA (measured in degrees) placed in bins 
of the number of days (to the nearest full day) that New/Full 
Moon is from Perihelion in the following year (i.e. ST  1). 
As with Fig. (5), the vertical error bars shown on each data 
point in Fig. (7) represent the 95 % confidence limits derived 
from the standard error on the mean for each bin. Again, a 
clear trend is evident between the two variables plotted in 
Fig. (7), with LSA moving towards the Equator as (ST  1) 
decreases. 

 The mean data point for each of the bins in Fig. (7) has 
been used to determine a line-of-best-fit. This fit has then 
been used to scale (ST  1) (  = -0.121  (ST  1) + 0.680 
where R

2
 = 0.83) so that 's mean and variance are 

comparable to that of the LSA time series. It is important to 
note that the time series  has been calculated using the 
observed values of (ST  1) for each year. 

 As with the 9.3 year spectral feature, a stronger link 
between the 3.8 year feature and the period of the spring tide 
seasonal peak tides is established if the cross correlation 
between the LSA time series and  shows that 3.8 year 
spectral signal is in-phase with the spring tide seasonal peak 
tidal cycle. 

 Fig. (8) shows a plot of the normalized cross-correlation 

function for LSA and , where both time series have been 

shifted to a zero mean. Horizontal solid lines are 

superimposed on this figure at values of ±0.16 to indicate the 

95 % confidence levels (i.e. ±1.96/ N  where N is the 

number of data points) for the cross correlation coefficient 

that rules out the null hypothesis that at least one of the times 

series is white noise. 

 It is evident from Fig. (8) that the cross correlation 
between LSA and  is significant and that the observed 3.8 
year periodic signal in the LSA time series is retarded by one 
year in phase (i.e. one year behind) compared to the 3.8 year 
period of the spring tide seasonal tidal cycle. Interestingly, 
Fig. (8) shows that there is a correlation in signal between 
parts of the LSA time series that are separated by 19 years (= 
5  3.8 years), a period of time that is equal to the Lunar 
Metonic cycle. 

4. DISCUSSIONS AND CONCLUSIONS 

 This study has attempted to extend the pioneering work 
of Li et al. [5] by looking for evidence of an atmospheric 
lunar tidal signal in the variability of the peak latitude of the 
summer anomaly of the subtropical high pressure ridge  
 

 

Fig. (6). This figure shows a plot of the normalized cross correlation function for LSA and , where both time series have been shifted to a 

zero mean. Horizontal dotted lines are superimposed on this figure to indicate the 95 % confidence levels for the cross correlation coefficient. 

The norm = 1 option of the XCORR worksheet function in the DADiSP 2002 software package has been used to normalize the cross-

correlation function. 
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(STR) over Eastern Australia, on inter-annual to decadal 
timescales (i.e. from 2 to 20 years). 

 Two separate methods were used to infer the potential 
periods for the atmospheric lunar tidal signal that might be 
observed in the atmospheric pressure record. 

 

 The first method assumes that lunar-tidal forces act 
independently of the other forcing factors that produce 
significant long-term variations in atmospheric pressure. It 
predicted that you should see long-term periodicities in the 
pressure records that match periodicities of the most extreme 
peak lunar tides. This analysis identified four potential long- 
 

 

Fig. (7). The Summer latitude anomaly of the peak of the STR (LSA in degrees) placed in bins of the number of days (to the nearest full day) 

that New/Full Moon is from Perihelion in the following year (i.e. ST  1). 

 

Fig. (8). This figure shows a plot of the normalized cross correlation function for LSA and , where both time series have been shifted to a 

zero mean. Horizontal solid lines are superimposed on this figure to indicate the 95 % confidence levels for the cross correlation coefficient. 

The norm = 1 option of the XCORR worksheet function in the DADiSP 2002 software package has been used to normalize the cross-

correlation function. 
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term periods for the atmospheric lunar tidal signal at periods 
of 3.01, 6.01, 9.02 and 18.03 (tropical) years. None of these 
periods were observed in the LSA time series. 

 The second method assumed that if lunar tides do play a 
role in influencing atmospheric pressure, it was most likely 
one where the tidal forces act in "resonance" with the 
changes caused by the far more dominant solar-driven 
seasonal cycles. In this case, it is not so much in what years 
do the lunar tides reach their maximum strength, but whether 
or not there are peaks in the strength of the lunar tides that 
re-occur at the same time within the annual seasonal cycle. 
This simple “resonance” model identified three potential 
long-term periods for the atmospheric lunar tides matching 
those of the 3.8 year peak spring tides, the 8.85 year perigean 
spring tides, and the 9.3 year draconic spring tides. 

 A Lomb-Scargle periodogram of the peak latitude of the 
summer anomaly of the STR over Eastern Australia (LSA) 
shows that there are significant peaks in this times series at 
9.4 (+0.4/ 0.3) and 3.78 (±0.06). The 9.4 year peak is 
consistent with the 9.3 year period of the Draconic spring 
tidal cycle and the 3.8 year peak is consistent with the 3.8 
year period of the peak spring tidal cycle. Singular spectrum 
analysis of the LSA time series shows that the 9.4 year 
spectral feature is significant throughout the whole period 
between 1860 and 2010 while the 3.8 year feature is 
enhanced around the 1930's and from about 1985 until 2010. 

 A linear trend is established between LSA and  where  
= 0.013   0.347 and  is the angle between the Earth-Sun 
axis and the line-of-nodes of the Lunar orbit at perihelion.  
is an indicator of the strength of the 9.3 year Draconic spring 
tides. The form of this trend is such that LSA moves away 
from the Equator as  decreases. 

 A second linear trend is established between LSA and  
where  = -0.121 (ST  1) + 0.680 and (ST  1) is the 
number of days (to the nearest full day) that a New/Full 
Moon is from Perihelion, in the following year. The number 
of days that a New/Full Moon is from Perihelion (i.e. ST) is 
an indicator of the strength of the 3.8 year peak spring tides. 
The form of this second trend is such that LSA moves 
towards the Equator as (ST  1) decreases. 

 A cross-correlation between LSA and  shows that the 9.3 
year periodic signal in the LSA time series is in-phase with 
the 9.3 year draconic spring tidal cycle. Similarly, a cross-
correlation between LSA and  shows that the 3.8 year 
periodic signal in the LSA time series is retarded by one year 
in phase (i.e. one year behind) compared to the 3.8 year peak 
spring tidal cycle. 

 This study shows that if you control for the seasonal 
(solar) effects upon the peak latitude anomaly of the Sub-
Tropical high pressure ridge over Eastern Australia, by 
limiting your analysis to the summer months, it is possible to 
discern the periodicities in the pressure ridge’s peak latitude 
that are caused by lunar tidal forces acting over inter-annual 
to decadal timescales. 
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